
Java
J u s t a q u i c k r e m i n d e r

1

The Java we will be
using

Java: J2SE 1.4.2

Embedded Java means hardware-related
restrictions (smallish windows, no menus,
no scrolling, ...)

Embedded Java means software-related
restrictions (AWT only, deprecated
methods, ...)

2

Basics

Main Class

public static void main(String [] args)

System class

- Input/Output

- OS interactions (environment, librairies,...)

- Garbage Collector

3

Magic

The JVM is a compiled program

Java bytecode is loaded on the fly

JAR archives are in a pre-defined location

4

Magic (continued)

The user specifies the main class (command
line switch, Manifest, ...)

Dynamic loading is based on the Class class

- Identification: getName(), getSuperclass(), ...

- Components : getFields(), getMethods(),...

- New objects creation: newInstance()

Retrieves the main method and executes

5

"Hello World 2"

AWT Interface

- Frame

- Label

- Button

First version : "external" instanciation

- new Frame

- new elements

- add to frame

- return

6

Demo

7

Magic

The OS provides the windows and other
graphical items

Default behavior (focus, movements,
resizing, closing,...)

As long as you have one visible window,
and you don't call System.exit(int v), the
program is active

8

"Panic Button"

A frame with a "quit" button

External feedback

Internal handling of events

9

Demo

10

Magic

Frame-extending class

Default behavior different from system
behavior (pre-loaded widgets, button
actions, ...)

MouseListener implementation

Handling the basic mouse actions (click,
enter, exit, press, release)

11

Magic (continued)

Interfaces

Java has strong types

An interface is a class where none of the
methods are implemented

Interfaces can be implemented in very
different classes

12

Interesting
Interfaces

EventListener class (KeyListener,
ActionListener, MouseListener, etc...)

Comportemental (Runnable, Serializable,
Clonable,...)

"Drivers" (SQL drivers, hardware, etc...)

"Design Patterns"

13

"Read/Write Heads"

Reading a file into a frame

Synchronous I/O

14

Demo

15

Magic

JVM acts as a wrapper for OS calls

File is a catalog entry, not a regular file

FileReader is a buffer pointing to the inside
of a file

BufferedReader is a formatter for another
reader

16

Magic (continued)

new BufferedReader(new FileReader(new
File("path")));

File is a pointer to a file, FileReader is a
byte-cruncher, and BufferedReader formats
the bytes for later use

You have many *Reader (String, Object,
Data, etc...)

17

But!

Careful!

Be really careful!

As soon as you call foreign code, you have
to be extra careful

18

But!!

Calling foreign code can trigger a lot of
side-effects

Remember you are in a dynamic
environment

Remember you are in a parallel
environment

19

Exceptions

Java uses exception styled like C++

try {
// code
} catch(SomeException e1) {
} catch(SomeOtherException e2) {
} (...)
finally {
}

20

Exceptions
(continued)

Whatever you might be doing in the try, it is
stopped by an exception

The first catch that matches the raised
exception is called

Then, the "finally" block is executed

The compiler warns you of uncaught
exceptions

21

Exceptions
(Continued)

If a method raises an exception, it is in its
prototype:
void fun(void) throws MyFunkyException

MyFunkyException is a full-blown class :
it has methods, variables, etc...

If you want to raise an exception :
throw new MyFunkyException()

Anything that implements the Throwable
interface can be raised

22

Exceptions
(perspectives)

Exceptions are not only about real errors,
they can be used as interrupting messages

If you don't take care of the exceptions, the
program will actually quit

23

Questions

24

